
ChanPy
Release 0.0.2

Jake Magers

May 12, 2020

CONTENTS

1 API 3
1.1 Core . 3
1.2 Transducers . 13

2 Glossary 19

Python Module Index 21

Index 23

i

ii

ChanPy, Release 0.0.2

ChanPy is a CSP Python library based on Clojure core.async. It provides equivalents for all the functions in core.async
and provides channels that can be used with or without asyncio. ChanPy even provides support for applying transfor-
mations across channels in the same way Clojure does, via transducers.

Source code and issue tracking: https://github.com/JMagers/chanpy

License: Apache License 2.0

CONTENTS 1

https://clojure.github.io/core.async/
https://github.com/JMagers/chanpy
https://github.com/JMagers/chanpy/blob/master/LICENSE

ChanPy, Release 0.0.2

2 CONTENTS

CHAPTER

ONE

API

Channels, the center around any CSP library. The core module provides all the essential functions for creating and
managing them. For convenience, all of the public members of core exist at the top-level of the package.

Like Clojure’s core.async, ChanPy channels have direct support for transformations via transducers. The
transducers module provides many transducers as well as functions to help create and use them.

1.1 Core

Core functions for working with channels.

ChanPy’s channels have full support for use with asyncio coroutines, callback based code, and multi-threaded
designs. The functions in this module are designed to primarily accept and produce channels and by doing so, can be
used almost identically with each of the aforementioned styles.

An extremely valuable feature from Clojure’s core.async library is the ability to cheaply create asynchronous “pro-
cesses” using go blocks. ChanPy, like aiochan, is able to do something similar by leveraging Python’s own asyncio
library. Channels can easily be used from within coroutines which can then be added as tasks to an event loop. ChanPy
additionally offers ways for these tasks to be added from threads without a running event loop.

Note: Unless explicitly stated otherwise, any function involving asynchronous work should be assumed to require an
asyncio event loop. Many of these functions leverage the use of an event loop for the efficiency reasons stated earlier.
Threads with a running event loop will be able to directly call these functions but threads without one will be required
to register one to themselves using set_loop() prior to doing so. Calling set_loop() will be unnecessary for
threads that were created with thread() as those threads will have already been registered.

exception chanpy.core.QueueSizeError
Maximum pending channel operations exceeded.

Raised when too many operations have been enqueued on a channel. Consider using a windowing buffer to
prevent enqueuing too many puts or altering your design to have less asynchronous “processes” access the
channel at once.

Note: This exception is an indication of a design error. It should NOT be caught and discarded.

chanpy.core.alt(*ops, priority=False, default=Undefined)
Returns an awaitable representing the first and only channel operation to finish.

Accepts a variable number of operations that either get from or put to a channel and commits only one of them.
If no default is provided, then only the first op to finish will be committed. If default is provided and none of

3

https://github.com/zh217/aiochan

ChanPy, Release 0.0.2

the ops finish immediately, then no operation will be committed and default will instead be used to complete the
returned awaitable.

Parameters

• ops – Operations that either get from or put to a channel. A get operation is represented
as simply a channel to get from. A put operation is represented as an iterable of the form
[channel, val], where val is an item to put onto channel.

• priority – An optional bool. If True, operations will be tried in order. If False, operations
will be tried in random order.

• default – An optional value to use in case no operation finishes immediately.

Returns An awaitable that evaluates to a tuple of the form (val, ch). If default is not provided,
then val will be what the first successful operation returned and ch will be the channel used in
that operation. If default is provided and none of the operations complete immediately, then the
awaitable will evaluate to (default, 'default').

Raises

• ValueError – If ops is empty or contains both a get and put operation to the same channel.

• RuntimeError – If the calling thread has no running event loop.

See also:

b_alt()

chanpy.core.b_alt(*ops, priority=False, default=Undefined)
Same as alt() except it blocks instead of returning an awaitable.

Does not require an event loop.

chanpy.core.buffer(n)
Returns a fixed buffer with a capacity of n.

Puts to channels with this buffer will block if the capacity is reached.

Parameters n – A positive number.

class chanpy.core.chan(buf_or_n=None, xform=None, ex_handler=None)
A CSP channel with optional buffer, transducer, and exception handler.

Channels support multiple producers and consumers and may be buffered or unbuffered. Additionally,
buffered channels can optionally have a transformation applied to the values put to them through the use of
a transducer.

Channels may be used by threads with or without a running asyncio event loop. The get(), put(), and
alt() functions provide direct support for asyncio by returning awaitables. Channels additionally can be used
as asynchronous generators when used with async for. b_get(), b_put(), b_alt(), and to_iter()
provide blocking alternatives for threads which do not wish to use asyncio. Channels can even be used with
callback based code via f_put() and f_get(). A very valuable feature of channels is that producers and
consumers of them need not be of the same type. For example, a value placed onto a channel with put()
(asyncio) can be taken by a call to b_get() (blocking) from a separate thread.

A select/alt feature is also available using the alt() and b_alt() functions. This feature allows one to
attempt many operations on a channel at once and only have the first operation to complete actually committed.

Once closed, future puts will be unsuccessful but any pending puts will remain until consumed or until a
reduced value is returned from the transformation. Once exhausted, all future gets will complete with the
value None. Because of this, None cannot be put onto a channel either directly or indirectly through a transfor-
mation.

4 Chapter 1. API

ChanPy, Release 0.0.2

Parameters

• buf_or_n – An optional buffer that may be expressed as a positive number. If it’s a
number, a fixed buffer of that capacity will be used. If None, the channel will be unbuffered.

• xform – An optional transducer for transforming elements put onto the channel.
buf_or_n must not be None if this is provided.

• ex_handler – An optional function to handle exceptions raised during transformation.
Must accept the raised exception as a parameter. Any non-None return value will be put
onto the buffer.

See also:

buffer() dropping_buffer() sliding_buffer()

b_get(*, wait=True)
Same as get() except it blocks instead of returning an awaitable.

Does not require an event loop.

b_put(val, *, wait=True)
Same as put() except it blocks instead of returning an awaitable.

Does not require an event loop.

close()
Closes the channel.

f_get(f)
Asynchronously takes a value from the channel and calls f with it.

Does not require an event loop.

Parameters f – A non-blocking function accepting a single argument. Will be passed the value
taken from the channel or None if the channel is exhausted.

Raises QueueSizeError – If the channel has too many pending get operations.

f_put(val, f=None)
Asynchronously puts val onto the channel and calls f when complete.

Does not require an event loop.

Parameters

• val – A non-None value to put onto the channel.

• f – An optional non-blocking function accepting the completion status of the put opera-
tion.

Returns False if the channel is already closed or True if it’s not.

Raises QueueSizeError – If the channel has too many pending put operations.

get(*, wait=True)
Attempts to take a value from the channel.

Gets will fail if the channel is exhausted or if wait=False and a value is not immediately available.

Parameters wait – An optional bool that if False, fails the get operation when a value is not
immediately available.

Returns An awaitable that evaluates to a value taken from the channel or None if the operation
fails.

Raises

1.1. Core 5

ChanPy, Release 0.0.2

• RuntimeError – If the calling thread has no running event loop.

• QueueSizeError – If the channel has too many pending get operations.

offer(val)
Same as b_put(val, wait=False).

poll()
Same as b_get(wait=False).

put(val, *, wait=True)
Attempts to put val onto the channel.

Puts will fail in the following cases:

• the channel is already closed

• wait=False and val cannot be immediately put onto the channel

• a reduced value is returned during transformation

Parameters

• val – A non-None value to put onto the channel.

• wait – An optional bool that if False, fails the put operation when it cannot complete
immediately.

Returns An awaitable that will evaluate to True if val is accepted onto the channel or False if
it’s not.

Raises

• RuntimeError – If the calling thread has no running event loop.

• QueueSizeError – If the channel has too many pending put operations.

to_iter()
Returns an iterator over the channel’s values.

Calling next() on the returned iterator may block. Does not require an event loop.

chanpy.core.dropping_buffer(n)
Returns a windowing buffer that drops inputs when capacity is reached.

Puts to channels with this buffer will appear successful after the capacity is reached but nothing will be added
to the buffer.

Parameters n – A positive number representing the buffer capacity.

chanpy.core.get_loop()
Returns the event loop for the current thread.

If set_loop() has been used to register an event loop to the current thread, then that loop will be returned. If
no such event loop exists, then returns the running loop in the current thread.

Raises RuntimeError – If no event loop has been registered and no loop is running in the current
thread.

See also:

set_loop()

chanpy.core.go(coro)
Adds a coroutine object as a task to the current event loop.

6 Chapter 1. API

ChanPy, Release 0.0.2

coro will be added as a task to the event loop returned from get_loop().

Parameters coro – A coroutine object.

Returns A channel containing the return value of coro.

chanpy.core.is_chan(ch)
Returns True if ch is a channel.

chanpy.core.is_unblocking_buffer(buf)
Returns True if puts to the buffer will never block.

chanpy.core.map(f, chs, buf_or_n=None)
Repeatedly takes a value from each channel and applies f.

Asynchronously takes one value per source channel and passes the resulting list of values as positional arguments
to f. Each return value of f will be put onto the returned channel. The returned channel closes if any one of the
source channels closes.

Parameters

• f – A non-blocking function accepting len(chs) positional arguments.

• chs – An iterable of source channels.

• buf_or_n – An optional buffer to use with the returned channel. Can also be represented
as a positive number. See chan.

Returns A channel containing the return values of f.

chanpy.core.merge(chs, buf_or_n=None)
Returns a channel that emits values from the provided source channels.

Transfers all values from chs onto the returned channel. The returned channel closes after the transfer finishes.

Parameters

• chs – An iterable of source channels.

• buf_or_n – An optional buffer to use with the returned channel. Can also be represented
as a positive number. See chan.

See also:

mix

class chanpy.core.mix(ch)
Consumes values from each of its source channels and puts them onto ch.

A source channel can be added with admix() and removed with unmix() or unmix_all().

A source channel can be given a set of attribute flags to modify how it is consumed with toggle(). If a
channel has its 'pause' attribute set to True, then the mix will stop consuming from it. Else if its 'mute'
attribute is set, then the channel will still be consumed but its values discarded.

A source channel may also be soloed by setting the 'solo' attribute. If any source channel is soloed, then all
of its other attributes will be ignored. Furthermore, non-soloed channels will have their attributes ignored and in-
stead will take on whatever attribute has been set with solo_mode() (defaults to 'mute' if solo_mode()
hasn’t been invoked).

Parameters ch – A channel to put values onto.

See also:

merge()

1.1. Core 7

ChanPy, Release 0.0.2

admix(ch)
Adds ch as a source channel of the mix.

solo_mode(mode)
Sets the mode for non-soloed source channels.

For as long as there is at least one soloed channel, non-soloed source channels will have their attributes
ignored and will instead take on the provided mode.

Parameters mode – Either 'pause' or 'mute'. See mix for behaviors.

toggle(state_map)
Merges state_map with the current state of the mix.

state_map will be used to update the attributes of the mix’s source channels by merging its contents with
the current state of the mix. If state_map contains a channel that is not currently in the mix, then that
channel will be added with the given attributes.

Parameters state_map – A dictionary of the form {channel: attribute_map}
where attribute_map is a dictionary of the form {attribute: bool}. Supported at-
tributes are {'solo', 'pause', 'mute'}. See mix for corresponding behaviors.

unmix(ch)
Removes ch from the set of source channels.

unmix_all()
Removes all source channels from the mix.

class chanpy.core.mult(ch)
A mult(iple) of the source channel that puts each of its values to its taps.

tap() can be used to subscribe a channel to the mult and therefore receive copies of the values from ch. Taps
can later be unsubscribed using untap() or untap_all().

No tap will receive the next value from ch until all taps have accepted the current value. If no tap exists, values
will still be consumed from ch but will be discarded.

Parameters ch – A channel to get values from.

tap(ch, *, close=True)
Subscribes a channel as a consumer of the mult.

Parameters

• ch – A channel to receive values from the mult’s source channel.

• close – An optional bool. If True, ch will be closed after the source channel becomes
exhausted.

untap(ch)
Unsubscribes a channel from the mult.

untap_all()
Unsubscribes all taps from the mult.

chanpy.core.onto_chan(ch, coll, *, close=True)
Asynchronously transfers values from an iterable to a channel.

Parameters

• ch – A channel to put values onto.

• coll – An iterable to get values from.

• close – An optional bool. If True, ch will be closed after transfer finishes.

8 Chapter 1. API

ChanPy, Release 0.0.2

Returns A channel that closes after the transfer finishes.

See also:

to_chan()

chanpy.core.pipe(from_ch, to_ch, *, close=True)
Asynchronously transfers all values from from_ch to to_ch.

Parameters

• from_ch – A channel to get values from.

• to_ch – A channel to put values onto.

• close – An optional bool. If True, to_ch will be closed after transfer finishes.

Returns to_ch.

chanpy.core.pipeline(n, to_ch, xform, from_ch, *, close=True, ex_handler=None, mode=’thread’,
chunksize=1)

Transforms values from from_ch to to_ch in parallel.

Values from from_ch will be transformed in parallel using a pool of threads or processes. The transducer will
be applied to values from from_ch independently (not across values) and may produce zero or more outputs per
input. The transformed values will be put onto to_ch in order relative to the inputs. If to_ch closes, then from_ch
will no longer be consumed from.

Parameters

• n – A positive int specifying the maximum number of workers to run in parallel.

• to_ch – A channel to put the transformed values onto.

• xform – A transducer that will be applied to each value independently (not across
values).

• from_ch – A channel to get values from.

• close – An optional bool. If True, to_ch will be closed after transfer finishes.

• ex_handler – An optional exception handler. See chan.

• mode – Either 'thread' or 'process'. Specifies whether to use a thread or process
pool to parallelize work.

• chunksize – An optional positive int that’s only relevant when mode='process'.
Specifies the approximate amount of values each worker will receive at once.

Returns A channel that closes after the transfer finishes.

Note: If CPython is being used with mode='thread', then xform must release the GIL at some point in
order to achieve any parallelism.

See also:

pipeline_async()

chanpy.core.pipeline_async(n, to_ch, af, from_ch, *, close=True)
Transforms values from from_ch to to_ch in parallel using an async function.

Values will be gathered from from_ch and passed to af along with a channel for its outputs to be placed onto. af
will be called as af(val, result_ch) and should return immediately, having spawned some asynchronous
operation that will place zero or more outputs onto result_ch. Up to n of these asynchronous “processes” will be
run at once, each of which will be required to close their corresponding result_ch when finished. Values from

1.1. Core 9

ChanPy, Release 0.0.2

these result channels will be placed onto to_ch in order relative to the inputs from from_ch. If to_ch closes, then
from_ch will no longer be consumed from and any unclosed result channels will be closed.

Parameters

• n – A positive int representing the maximum number of asynchronous “processes” to run at
once.

• to_ch – A channel to place the results onto.

• af – A non-blocking function that will be called as af(val, result_ch). This func-
tion will presumably spawn some kind of asynchronous operation that will place outputs
onto result_ch. result_ch must be closed before the asynchronous operation finishes.

• from_ch – A channel to get values from.

• close – An optional bool. If True, to_ch will be closed after transfer finishes.

Returns A channel that closes after the transfer finishes.

See also:

pipeline()

chanpy.core.promise_chan(xform=None, ex_handler=None)
Returns a channel that emits the same value forever.

Creates a channel with an optional transducer and exception handler that always returns the same value
to consumers. The value emitted will be the first item put onto the channel or None if the channel was closed
before the first put.

Parameters

• xform – An optional transducer. See chan.

• ex_handler – An optional exception handler. See chan.

class chanpy.core.pub(ch, topic_fn, buf_fn=None)
A pub(lication) of the source channel divided into topics.

The values of ch will be categorized into topics defined by topic_fn. Each topic will be given its own mult
for channels to subscribe to. Channels can be subscribed to a given topic with sub() and unsubscribed with
unsub() or unsub_all().

Parameters

• ch – A channel to get values from.

• topic_fn – A function that given a value from ch returns a topic identifier.

• buf_fn – An optional function that given a topic returns a buffer to be used with that
topic’s mult channel. If not provided, channels will be unbuffered.

See also:

mult

sub(topic, ch, *, close=True)
Subscribes a channel to the given topic.

Parameters

• topic – A topic identifier.

• ch – A channel to subscribe.

10 Chapter 1. API

ChanPy, Release 0.0.2

• close – An optional bool. If True, ch will be closed when the source channel is ex-
hausted.

unsub(topic, ch)
Unsubscribes a channel from the given topic.

unsub_all(topic=Undefined)
Unsubscribes all subs from a topic or all topics if not provided.

chanpy.core.reduce(rf, init, ch)→ result_ch
reduce(rf, ch) -> result_ch

Asynchronously reduces a channel.

Asynchronously collects values from ch and reduces them using rf, placing the final result in the returned
channel. If ch is exhausted, then init will be used as the result. If ch is not exhausted, then the first call to rf will
be rf(init, val) where val is taken from ch. rf will continue to get called as rf(prev_rf_return,
next_val) until either ch is exhausted or rf returns a reduced value.

Parameters

• rf – A reducing function accepting 2 args. If init is not provided, then rf must
return a value to be used as init when called with 0 args.

• init – An optional initial value.

• ch – A channel to get values from.

Returns A channel containing the result of the reduction.

See also:

transduce()

chanpy.core.set_loop(loop)
Registers an event loop to the current thread.

Any thread not running an asyncio event loop will be required to run this function before any asynchronous
functions are used. This is because most of the functions in this library that involve asynchronous work are
designed to do so through an event loop.

A single event loop may be registered to any number of threads at once.

Parameters loop – An asyncio event loop.

Returns A context manager that on exit will unregister loop and reregister the event loop that was
originally set.

See also:

get_loop() thread()

chanpy.core.sliding_buffer(n)
Returns a windowing buffer that evicts the oldest element when capacity is reached.

Puts to channels with this buffer will complete successfully after the capacity is reached but will evict the oldest
element in the buffer.

Parameters n – A positive number representing the buffer capacity.

chanpy.core.split(pred, ch, true_buf=None, false_buf=None)
Splits the values of a channel into two channels based on a predicate.

Returns a tuple of the form (true_ch, false_ch) where true_ch contains all the values from ch where
the predicate returns True and false_ch contains all the values that return False.

1.1. Core 11

ChanPy, Release 0.0.2

Parameters

• pred – A predicate function, pred(value) -> bool.

• ch – A channel to get values from.

• true_buf – An optional buffer to use with true_ch. See chan.

• false_buf – An optional buffer to use with false_ch. See chan.

Returns A tuple of the form (true_ch, false_ch).

chanpy.core.thread(f, executor=None)
Registers current loop to a separate thread and then calls f from it.

Calls f in another thread, returning immediately to the calling thread. The separate thread will have the loop
from the calling thread registered to it while f runs.

Parameters

• f – A function accepting no arguments.

• executor – An optional ThreadPoolExecutor to submit f to.

Returns A channel containing the return value of f.

chanpy.core.timeout(msecs)
Returns a channel that closes after given milliseconds.

chanpy.core.to_chan(coll)
Returns a channel that emits all values from an iterable and then closes.

Parameters coll – An iterable to get values from.

See also:

onto_chan()

chanpy.core.to_list(ch)
Asynchronously reduces the values from a channel to a list.

Returns A channel containing a list of values from ch.

chanpy.core.transduce(xform, rf, init, ch)→ result_ch
transduce(xform, rf, ch) -> result_ch

Asynchronously reduces a channel with a transformation.

Asynchronously collects values from ch and reduces them using a transformed reducing function equal to
xform(rf). See reduce() for more information on reduction. After the transformed reducing function
has received all input it will be called once more with a single argument, the accumulated result.

Parameters

• xform – A transducer.

• rf – A reducing function accepting both 1 and 2 arguments. If init is not provided,
then rf must return a value to be used as init when called with 0 arguments.

• init – An optional initial value.

• ch – A channel to get values from.

Returns A channel containing the result of the reduction.

See also:

reduce()

12 Chapter 1. API

ChanPy, Release 0.0.2

1.2 Transducers

Transducers, composable algorithmic transformations.

Notable features of transducers:

• Are decoupled from the context in which they are used. This means they can be reused with any trans-
ducible process, including iterables and channels.

• Are composable with simple function composition. See comp().

• Support early termination via reduced values.

Creating transducers: Transducers are also known as reducing function transformers. They are simply func-
tions that accept a reducing function as input and return a new reducing function as output.

See clojure.org for more information about transducers.

chanpy.transducers.append(appendable, val)→ appended result

append(appendable) -> appendable
append() -> []

A reducing function that appends val to appendable.

chanpy.transducers.cat(rf)
A transducer that concatenates the contents of its inputs.

Expects each input to be an iterable, the contents of which will be outputted one at a time.

See also:

mapcat()

chanpy.transducers.comp(*xforms)
Returns a new transducer equal to the composition of xforms.

The returned transducer passes values through the given transformations from left to right.

Parameters xforms – Transducers.

chanpy.transducers.completing(rf, cf=<function identity>)
Returns a wrapper around rf that calls cf when invoked with one argument.

Parameters

• rf – A reducing function.

• cf – An optional function that accepts a single argument. Used as the completion arity for
the returned reducing function.

Returns A reducing function that dispatches to cf when called with a single argument or rf
when called with any other number of arguments.

chanpy.transducers.dedupe(rf)
A transducer that drops consecutive duplicate values.

chanpy.transducers.distinct(rf)
A transducer that drops duplicate values.

chanpy.transducers.drop(n)
Returns a transducer that drops the first n inputs.

The returned transducer drops the first n inputs if n < the number of inputs. If n >= the number of inputs, then
drops all of them.

1.2. Transducers 13

https://clojure.org/reference/transducers

ChanPy, Release 0.0.2

Parameters n – A number.

chanpy.transducers.drop_last(n)
Returns a transducer that drops the last n values.

The returned transducer drops the last n inputs if n < the number of inputs. If n >= the number of inputs, then
drops all of them.

Parameters n – A number.

Note: No values will be outputted until n inputs have been received.

chanpy.transducers.drop_while(pred)
Returns a transducer that drops inputs until the predicate returns False.

Parameters pred – A predicate function, pred(input) -> bool.

chanpy.transducers.ensure_reduced(x)
Returns reduced(x) if x is not already a reduced value.

chanpy.transducers.filter(pred)
Returns a transducer that outputs values for which predicate returns True.

Parameters pred – A predicate function, pred(value) -> bool.

See also:

filter_indexed() remove()

chanpy.transducers.filter_indexed(f)
Returns a transducer which filters values based on f(index, value).

The returned transducer outputs values that return True when passed into f with the corresponding index. f will
be called as f(index, value) where index represents the nth value to be passed into the transformation
starting at 0.

Parameters f – A function, f(index, value) -> bool.

See also:

filter() remove_indexed()

chanpy.transducers.identity(x)
A NOP transducer that simply returns its argument.

chanpy.transducers.interpose(sep)
Returns a transducer that outputs each input separated by sep.

chanpy.transducers.into(appendable, xform, coll)
Transfers all values from coll into appendable with a transformation.

Same as itransduce(xform, append, appendable, coll).

chanpy.transducers.ireduce(rf, init, coll)→ reduction result
ireduce(rf, coll) -> reduction result

Returns the result of reducing an iterable.

Reduces coll by repeatedly calling rf with 2 arguments. If coll is empty, then init will be returned. If coll is
not empty, then the first call to rf will be rf(init, first_coll_value). rf will continue to get called
as rf(prev_rf_return, next_coll_value) until either coll is exhausted or rf returns a reduced
value.

Parameters

14 Chapter 1. API

ChanPy, Release 0.0.2

• rf – A reducing function accepting 2 arguments. If init is not provided, then rf
must return a value to be used as init when called with 0 arguments.

• init – An optional initial value.

• coll – An iterable.

See also:

reduced itransduce()

chanpy.transducers.is_reduced(x)
Returns True if x is the result from a call to reduced.

chanpy.transducers.itransduce(xform, rf, init, coll)→ reduction result
itransduce(xform, rf, coll) -> reduction result

Returns the result of reducing an iterable with a transformation.

Reduces coll using a transformed reducing function equal to xform(rf). See ireduce() for more infor-
mation on reduction. After the transformed reducing function has received all input it will be called once more
with a single argument, the result thus far.

Parameters

• xform – A transducer.

• rf – A reducing function accepting both 1 and 2 arguments. If init is not provided,
then rf must return a value to be used as init when called with 0 arguments.

• init – An optional initial value.

• coll – An iterable.

See also:

ireduce()

chanpy.transducers.keep(f)
Returns a transducer that outputs the non-None return values of f(value).

See also:

keep_indexed()

chanpy.transducers.keep_indexed(f)
Returns a transducer that outputs the non-None return values of f(index, value).

The returned transducer outputs the non-None return values of f(index, value) where index represents
the nth value to be passed into the transformation starting at 0.

Parameters f – A function, f(index, value) -> any.

See also:

keep()

chanpy.transducers.map(f)
Returns a transducer that applies f to each input.

Parameters f – A function, f(input) -> any.

See also:

map_indexed()

1.2. Transducers 15

ChanPy, Release 0.0.2

chanpy.transducers.map_indexed(f)
Returns a transducer that transforms using f(index, value).

The returned transducer applies f to each value with the corresponding index. f will be called as f(index,
value) where index represents the nth value to be passed into the transformation starting at 0.

Parameters f – A function, f(index, value) -> any.

See also:

chanpy.transducers.map()

chanpy.transducers.mapcat(f)
Returns a transducer that applies f to each input and concatenates the result.

chanpy.transducers.multi_arity(*funcs)
Returns a new multi-arity function which dispatches to funcs.

The returned function will dispatch to the provided functions based on the number of positional arguments it
was called with. If called with zero arguments it will dispatch to the first function in funcs, if called with one
argument it will dispatch to the second function in funcs, etc.

Parameters funcs – Functions to dispatch to. Each function represents a different arity for the
returned function. None values may be used to represent arities that don’t exist.

chanpy.transducers.partition(n, step=None, pad=None)
Returns a transducer that partitions values into tuples of size n.

The returned transducer partitions the values into tuples of size n that are step items apart.

• If step < n, partitions will overlap n - step elements.

• If step == n, the default, no overlapping or dropping will occur.

• If step > n, step - n values will be dropped between partitions.

If the last partition size is greater than 0 but less than n:

• If pad is None, the last partition is discarded.

• If pad exists, its values will be used to fill the partition to a desired size of n. The padded partition will be
outputted even if its size is < n.

Parameters

• n – A positive int representing the length of each partition. The last partition may be < n if
pad is provided.

• step – An optional positive int used as the offset between partitions.

• pad – An optional iterable of any size. If the last partition size is greater than 0 and less
than n, then pad will be applied to it.

See also:

partition_all()

chanpy.transducers.partition_all(n, step=None)
Returns a transducer that partitions all values.

The returned transducer partitions values into tuples of size n that are step items apart. Partitions at the end may
have a size < n.

• If step < n, partitions will overlap n - step elements.

• If step == n, the default, no overlapping or dropping will occur.

16 Chapter 1. API

ChanPy, Release 0.0.2

• If step > n, step - n values will be dropped between partitions.

Parameters

• n – An optional positive int representing the size of each partition (may be less for partitions
at the end).

• step – An optional positive int used as the offset between partitions. Defaults to n.

See also:

partition()

chanpy.transducers.partition_by(f)
Returns a transducer that partitions inputs by f.

In this context, a partition is defined as a tuple containing consecutive items for which f(item) returns the
same value. That is to say, a new partition will be started each time f(item) returns a different value than the
previous call.

Parameters f – A function, f(item) -> any.

chanpy.transducers.random_sample(prob)
Returns a transducer that selects inputs with the given probability.

Parameters prob – A number between 0 and 1.

class chanpy.transducers.reduced(x)
Wraps x in such a way that a reduce will terminate with x.

A reducing function can return reduced(x) to terminate a reduction early with the value x.

If used with a transduce function such as itransduce(), the reduction will terminate with the result of
invoking the completion arity with x.

chanpy.transducers.reductions(rf, init=Undefined)
Returns a transducer that outputs each intermediate result from a reduction.

The transformation first outputs init. From then on, all outputs will be derived from rf(prev_output,
val)where val is an input to the transformation. rf will continue to get called until all input has been exhausted
or rf returns a reduced value.

Parameters

• rf – A reducing function accepting 2 arguments. If init is not provided, then rf
must return a value to be used as init when called with 0 arguments.

• init – An optional initial value.

See also:

ireduce()

chanpy.transducers.remove(pred)
Returns a transducer that drops values for which predicate returns True.

Parameters pred – A predicate function, pred(value) -> bool.

See also:

filter() remove_indexed()

chanpy.transducers.remove_indexed(f)
Returns a transducer which drops values based on f(index, value).

1.2. Transducers 17

ChanPy, Release 0.0.2

The returned transducer drops values that return True when passed into f with the corresponding index. f will
be called as f(index, value) where index represents the nth value to be passed into the transformation
starting at 0.

Parameters f – A function, f(index, value) -> bool.

See also:

filter_indexed() remove()

chanpy.transducers.replace(smap)
Returns a transducer that replaces values based on the given dictionary.

The returned transducer replaces any input that’s a key in smap with the key’s corresponding value. Inputs that
aren’t a key in smap will be outputted without any transformation.

Parameters smap – A dictionary that maps values to their replacements.

chanpy.transducers.take(n)
Returns a transducer that outputs the first n inputs.

The returned transducer outputs the first n inputs if n < the number of inputs. If n >= the number of inputs, then
outputs all of them.

Parameters n – A number.

chanpy.transducers.take_last(n)
Returns a transducer that outputs the last n inputs.

The returned transducer outputs the last n inputs if n < the number of inputs. If n >= the number of inputs, then
outputs all of them.

Note: No values will be outputted until the completion arity is called.

Parameters n – A number.

chanpy.transducers.take_nth(n)
Returns a transducer that outputs every nth input starting with the first.

Parameters n – A positive int.

chanpy.transducers.take_while(pred)
Returns a transducer that outputs values until the predicate returns False.

Parameters pred – A predicate function, f(value) -> bool.

chanpy.transducers.unreduced(x)
Returns x if it’s not a reduced value else returns the unwrapped value.

chanpy.transducers.xiter(xform, coll)
Returns an iterator over the transformed elements in coll.

Useful for when you want to transform an iterable into another iterable in a lazy fashion.

Parameters

• xform – A transducer.

• coll – A potentially infinite iterable.

18 Chapter 1. API

CHAPTER

TWO

GLOSSARY

reducing function A type of function used for reduction.

It may have up to three different arities:

• The step arity accepts 2 arguments, the accumulated result and an input. It returns the new accumulated
result of the reduction.

• The init arity is optional and accepts 0 arguments. It returns an initial value for the accumulated result if
one is not explicitly provided.

• The completion arity is required only when used with a transducer and accepts 1 argument, the accu-
mulated result of the reduction. See clojure.org for more information about use with transducers.

multi_arity() can be used to help create these multi-arity functions.

Reducing functions additionally support a form of early termination via reduced values.

transducer Also known as a reducing function transformer, it’s simply a function that accepts a reducing
function as input and returns a new reducing function as output. It’s commonly referred to as a transformation
or xform throughout the documentation.

The transducers module provides many transducers as well as functions to help create and use them.

See clojure.org for information about transducers.

19

https://clojure.org/reference/transducers
https://clojure.org/reference/transducers

ChanPy, Release 0.0.2

20 Chapter 2. Glossary

PYTHON MODULE INDEX

c
chanpy.core, 3
chanpy.transducers, 13

21

ChanPy, Release 0.0.2

22 Python Module Index

INDEX

A
admix() (chanpy.core.mix method), 7
alt() (in module chanpy.core), 3
append() (in module chanpy.transducers), 13

B
b_alt() (in module chanpy.core), 4
b_get() (chanpy.core.chan method), 5
b_put() (chanpy.core.chan method), 5
buffer() (in module chanpy.core), 4

C
cat() (in module chanpy.transducers), 13
chan (class in chanpy.core), 4
chanpy.core (module), 3
chanpy.transducers (module), 13
close() (chanpy.core.chan method), 5
comp() (in module chanpy.transducers), 13
completing() (in module chanpy.transducers), 13

D
dedupe() (in module chanpy.transducers), 13
distinct() (in module chanpy.transducers), 13
drop() (in module chanpy.transducers), 13
drop_last() (in module chanpy.transducers), 14
drop_while() (in module chanpy.transducers), 14
dropping_buffer() (in module chanpy.core), 6

E
ensure_reduced() (in module chanpy.transducers),

14

F
f_get() (chanpy.core.chan method), 5
f_put() (chanpy.core.chan method), 5
filter() (in module chanpy.transducers), 14
filter_indexed() (in module chanpy.transducers),

14

G
get() (chanpy.core.chan method), 5

get_loop() (in module chanpy.core), 6
go() (in module chanpy.core), 6

I
identity() (in module chanpy.transducers), 14
interpose() (in module chanpy.transducers), 14
into() (in module chanpy.transducers), 14
ireduce() (in module chanpy.transducers), 14
is_chan() (in module chanpy.core), 7
is_reduced() (in module chanpy.transducers), 15
is_unblocking_buffer() (in module

chanpy.core), 7
itransduce() (in module chanpy.transducers), 15

K
keep() (in module chanpy.transducers), 15
keep_indexed() (in module chanpy.transducers), 15

M
map() (in module chanpy.core), 7
map() (in module chanpy.transducers), 15
map_indexed() (in module chanpy.transducers), 15
mapcat() (in module chanpy.transducers), 16
merge() (in module chanpy.core), 7
mix (class in chanpy.core), 7
mult (class in chanpy.core), 8
multi_arity() (in module chanpy.transducers), 16

O
offer() (chanpy.core.chan method), 6
onto_chan() (in module chanpy.core), 8

P
partition() (in module chanpy.transducers), 16
partition_all() (in module chanpy.transducers),

16
partition_by() (in module chanpy.transducers), 17
pipe() (in module chanpy.core), 9
pipeline() (in module chanpy.core), 9
pipeline_async() (in module chanpy.core), 9
poll() (chanpy.core.chan method), 6
promise_chan() (in module chanpy.core), 10

23

ChanPy, Release 0.0.2

pub (class in chanpy.core), 10
put() (chanpy.core.chan method), 6

Q
QueueSizeError, 3

R
random_sample() (in module chanpy.transducers),

17
reduce() (in module chanpy.core), 11
reduced (class in chanpy.transducers), 17
reducing function, 19
reductions() (in module chanpy.transducers), 17
remove() (in module chanpy.transducers), 17
remove_indexed() (in module chanpy.transducers),

17
replace() (in module chanpy.transducers), 18

S
set_loop() (in module chanpy.core), 11
sliding_buffer() (in module chanpy.core), 11
solo_mode() (chanpy.core.mix method), 8
split() (in module chanpy.core), 11
sub() (chanpy.core.pub method), 10

T
take() (in module chanpy.transducers), 18
take_last() (in module chanpy.transducers), 18
take_nth() (in module chanpy.transducers), 18
take_while() (in module chanpy.transducers), 18
tap() (chanpy.core.mult method), 8
thread() (in module chanpy.core), 12
timeout() (in module chanpy.core), 12
to_chan() (in module chanpy.core), 12
to_iter() (chanpy.core.chan method), 6
to_list() (in module chanpy.core), 12
toggle() (chanpy.core.mix method), 8
transduce() (in module chanpy.core), 12
transducer, 19

U
unmix() (chanpy.core.mix method), 8
unmix_all() (chanpy.core.mix method), 8
unreduced() (in module chanpy.transducers), 18
unsub() (chanpy.core.pub method), 11
unsub_all() (chanpy.core.pub method), 11
untap() (chanpy.core.mult method), 8
untap_all() (chanpy.core.mult method), 8

X
xiter() (in module chanpy.transducers), 18

24 Index

	API
	Core
	Transducers

	Glossary
	Python Module Index
	Index

